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ABSTRACT
In exploratory item factor analysis (IFA), researchers may use modelfit statistics and commonly invoked
fit thresholds to help determine the dimensionality of an assessment. However, these indices and
thresholds may mislead as they were developed in a confirmatory framework for models with contin-
uous, not categorical, indicators. The present study used Monte Carlo simulation methods to investi-
gate the ability of popular modelfit statistics (chi-square, root mean square error of approximation, the
comparative fit index, and the Tucker–Lewis index) and their standard cutoff values to detect the opti-
mal number of latent dimensions underlying sets of dichotomous items. Models werefit to data gener-
ated from three-factor population structures that varied in factor loading magnitude, factor intercor-
relation magnitude, number of indicators, and whether cross loadings or minor factors were included.
The effectiveness of the thresholds varied across fit statistics, and was conditional on many features
of the underlying model. Together, results suggest that conventional fit thresholds offer questionable
utility in the context of IFA.

Introduction

Exploratory factor analysis (EFA) is a widely used sta-
tistical technique for investigating the latent dimen-
sional structure underlying a set of observed variables
(Brown, 2013; MacCallum, 2009; Wirth & Edwards,
2007). EFA has many useful applications (Henson &
Roberts, 2006; Kline, 1994; Russell, 2002), especially as a
part of scale construction in the psychological and other
social/behavioral sciences (Henson & Roberts, 2006;
Kline, 1994). EFA summarizes lengthy assessments with
a small number of factors, provides guidance to test users
and administrators, can be used to generate scores on
the latent dimensions of interest, and can provide impor-
tant theoretical insights (Brown, 2013; Henson & Roberts,
2006; MacCallum, 2009). Furthermore, EFA often serves
as a preliminary step for further analyses, such as more
constrained measurement models, like confirmatory fac-
tory analytic models and Item Response Theory mod-
els, which typically require that the dimensional structure
of the items being analyzed be known a priori (Brown,
2013; Henson & Roberts, 2006; Lee & Ashton, 2007; Mac-
Callum, 2009; McDonald, 2013; Reise, Cook, & Moore,
2015). Thus, EFA is typically a key early stage in test devel-
opment (Brown, 2013) when there is a large item pool
(Lee & Ashton, 2007).
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When performing an EFA, researchers must make a
number of important decisions, with one of the most
consequential being the number of latent dimensions to
retain (i.e., the best characterization of item dimensional-
ity; Preacher & MacCallum, 2003). Determining the opti-
mal dimensionality of a set of items remains an imperfect
art (Henson & Roberts, 2002), and though there are tools
and heuristics to provide guidance, these methods cannot
totally alleviate the common interpretational difficulties
that arise (Goldberg & Velicer, 2006; Preacher & MacCal-
lum, 2003). Notably, this issue is exacerbated in the con-
text of item factor analysis (IFA), or EFA when indica-
tors are categorical in nature (Wirth & Edwards, 2007).
Traditional EFA, and the tools used to guide determina-
tions of dimensionality, were developed for use with con-
tinuous data, and the application of these techniques to
categorical data, especially dichotomous data, can lead to
more suspect and difficult to interpret results (Ferrando
& Lorenzo-Seva, 2000; Lee & Ashton, 2007; MacCallum,
2009).

Given the challenges associated with IFA relative to
EFA with continuous outcomes, including added compu-
tational challenges (Wirth & Edwards, 2007), and the fact
that traditional tools used to evaluate EFAs might be lim-
ited in this context (e.g., parallel analyses may become less
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effective when scales contain dichotomous items; Yang &
Xia, 2015), it is critical to consider any potential methods
that could be used to aid researchers in making decisions
regarding dimensionality in IFAs. As IFAs can be consid-
ered a special case of structural equation model (SEM),
examining indices of model fit standard in SEM has been
proposed as a method of helping to determine dimension-
ality in IFA (MacCallum, 2009). Model fit statistics are
usually judged in reference to certain established thresh-
olds, or “rules of thumb” (e.g., Hu & Bentler, 1999). How-
ever, these commonly invoked rules were derived from
analyses with continuous data in a more confirmatory
framework, without EFA/IFA in mind (West, Taylor, &
Wu, 2012). Thus, the current study uses Monte Carlo sim-
ulation methods to examine the extent to which popular
SEM model fit statistics and their commonly invoked cut-
off values can help guide the determination of dimension-
ality in IFA with dichotomous indicators.

Item factor analysis

EFA was developed to identify common factors among
normally distributed continuous variables; however,
many assessments and questionnaires are made up of
dichotomous or ordered categorical items (Wirth &
Edwards, 2007). Although under certain conditions cate-
gorical variables can be treated as continuous without any
major consequences (e.g., Rhemtulla, Brosseau-Liard, &
Savalei, 2012), ignoring the categorical nature of items
will often result in biased parameter estimates and fit
statistics (e.g., Bandalos, 2014; Cai, Maydeu-Olivares,
Coffman, & Thissen, 2006; Rhemtulla et al., 2012).
Treating dichotomous items—which represent the most
extreme departure from continuity—as continuous gen-
erally leads to the most distorted conclusions (Rhemtulla
et al., 2012). This is noteworthy as there are several fields
and disciplines that rely heavily on dichotomously scored
measures. For example, ability testing in educational set-
tings, and symptom assessment in clinical psychology, are
often based on questionnaires in which responses can fall
into either one of two categories (i.e., correct/incorrect
and symptom present/symptom absent).

Recent technological and statistical advances have
made the EFA of categorical items (i.e., IFA) relatively
accessible (Wirth & Edwards, 2007). Contemporary sta-
tistical programs are much more capable than their pre-
decessors in bearing the relatively high computational
burden associated with categorical latent variable model-
ing. Further, there have been many strides in the devel-
opment of estimation techniques for categorical data.
The two most popular categorical estimation approaches
are maximum likelihood (ML), and mean and vari-
ance adjusted weighted least squares (WLSMV; Wirth

& Edwards, 2007). Each estimator represents a gener-
ally viable approach (Bandalos, 2014; Lei, 2009), though
ML is more limited in that estimation quickly becomes
intractable as the number of indicators and dimensions
in an analysis increases (Wirth & Edwards, 2007). In the
exploratory context of IFA, this disadvantage of ML can
be particularly problematic, so WLSMV is generally the
preferred estimation approach for IFAs.

Conceptually, the least squares approach to IFA is
based on the assumption that underlying each cate-
gorical indicator is a normally distributed continuous
latent response variable (Muthen, du Toit, & Spisic, 1997;
Wirth & Edwards, 2007). An individual’s standing on this
latent variable relative to a set of thresholds determines
which response category they fall into. For example, for
a dichotomous item, if the individual’s standing on the
latent response variable is below a certain threshold they
will endorse a score of 0, whereas if they are above this
threshold they will endorse a score of 1. These continu-
ous latent response variables and the correlations between
them (tetrachoric or polychoric correlations depending
on the number of response categories) are derived via
ML estimation, and then the actual model parameters are
estimated from these correlations using least squares esti-
mation procedures. Most least squares estimators include
a weight matrix, and the fit function of the traditional
weighted least squares (WLS) estimator uses the inverse
of the asymptotic covariance matrix of the polychoric
correlations in this role (Muthen, 1993; Muthen et al.,
1997; Shin, 2013; Wirth & Edwards, 2007). The estimation
of this full weight matrix is difficult, however, and WLS
will provide biased results unless sample sizes are excep-
tionally (often impractically) large (Dolan, 1994; Muthen
et al., 1997; Wirth & Edwards, 2007). The WLSMV vari-
ation on WLS addresses this issue by using a diagonal
weight matrix (as opposed to the full weight matrix)
and adjusting standard errors and model test statistic
for the fact that a nonoptimal weight matrix was used
(Muthen, 1993; Muthen et al., 1997; Wirth & Edwards,
2007). WLSMV generally performs well at estimating
parameter values and standard errors for IFA (Banda-
los, 2014; Flora & Curran, 2004; Forero, Maydeu-Olivares,
& Gallardo-Pujol, 2009; Lei, 2009; Muthen et al., 1997;
Wirth & Edwards, 2007), though it may struggle under
certain conditions, such as when there is a high amount
of missingess in the data (DiStefano & Morgan, 2014;
Savalei, 2011).

Although the computation of IFA models is no longer a
major roadblock, these analyses still present considerable
challenges when it comes to interpretation and selecting
a robust and interpretable dimensional structure (Wirth
& Edwards, 2007). Within traditional EFA, several tools
with associated rules of thumb are typically used to help
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determine dimensionality (Goldberg & Velicer, 2006).
One of the most common can be referred to as the “K1”
or “Kaiser” rule, in which as many factors are extracted
as there are eigenvalues greater than 1 (Kaiser, 1960).
Another popular method, examining the “scree plot”,
entails looking for the first sharp “break” in a plot of the
eigenvalues (Cattell, 1966). A more advanced technique,
parallel analysis, involves comparing the actual eigenval-
ues to a plot of eigenvalues generated from random data
with the same number of observations and items as the
actual data (Horn, 1965).

Despite its popularity, the K1 rule is notoriously prob-
lematic and will often lead to overfactoring, that is,
extracting too many factors (Preacher & MacCallum,
2003; Russell, 2002). Examining the scree plot can be help-
ful, but in practice it is often not obvious where the first
major break is (Goldberg & Velicer, 2006; Lee & Ashton,
2007). Parallel analysis can also be effective, but is less
accessible for models with categorical indicators (Russell,
2002), and has also demonstrated a tendency to overfac-
tor in certain circumstances or underfactor (i.e., extract-
ing too few factors) in others (Beauducel, 2001; Yang &
Xia, 2015). The shortcomings of these traditional tech-
niques, paired with the potential difficulty in generalizing
them to IFA from EFA, leaves researchers with fewer tools
at their disposal for guidance in determining the number
of factors that best characterize their IFAs.

One potential diagnostic to guide evaluations of
dimensionality is model fit (West et al., 2012). Indices of
model fit have not been widely used in EFA, but represent
an increasingly viable approach as SEM programs that can
perform EFA/IFA become more widespread (MacCallum,
2009). SEM is predicated on attempting to reproduce an
observed correlation/covariance matrix as closely as pos-
sible given a specified pattern of interrelations between
variables. Indices of model fit are used to gauge how well
the reproduced matrix matches the observed matrix, with
different indices employing different approaches to quan-
tify the mismatch. The same basic principle of repro-
ducing an original data matrix underlies IFA, which can
be considered just one specific instance of SEM (Brown,
2013). As such, fit statistics typical in SEM can potentially
be brought to bear on the issue of determining dimension-
ality in IFA. Presumably, more appropriate factor struc-
tures will be better at reproducing the observed data, and
this will be reflected in markers of model fit.

Model fit and item factor analysis

A plethora of indices and statistics for assessing model fit
exist. The focus here will be on four of the most popu-
lar indices that are readily available for IFA with WLSMV
estimation: the chi-square test of exact fit, the root mean

square error of approximation (RMSEA), the compara-
tive fit index (CFI), and the Tucker–Lewis index (TLI)
(West et al., 2012). The chi-square tests whether the model
implied data matrix exactly matches the observed data
matrix (after taking into account sampling error). The
chi-square test applies the null-hypothesis significance-
testing paradigm to the issue of model fit. If the test statis-
tic is not significant, then it can be concluded that the
reproduced matrix does not deviate from the observed
matrix more than would be expected by chance; a sig-
nificant value implies the opposite. The chi-square test
was developed following the realization that when certain
assumptions are met, and the model is correctly specified,
the log likelihood values produced during the estimation
procedure follow a central chi-square distribution. How-
ever, if any assumptions (e.g., multivariate normality) are
violated, or the model is misspecified in any way, the log
likelihood values follow a noncentral chi-square distribu-
tion. A consequence of this is that the power to detect
any amount of misfit increases quickly with sample size,
such that trivial amounts of misfit are likely to result in a
significant chi-square (Browne & Cudeck, 1993). Given
the untenability of the requirement that all models be
perfectly specified and perfectly reproduce the observed
data (MacCallum & Austin, 2000), many other fit statis-
tics have been developed to complement the chi-square.

Although these other fit statistics place models on a
continuum of fit, it is common practice to set benchmarks
for “adequate” or “excellent” fit; currently, there is a stan-
dard set of thresholds (or “cutoff rules”) that get used
in the literature (West et al., 2012). The RMSEA repre-
sents a weighted sum of the squared residuals (Browne &
Cudeck, 1993; West et al., 2012). Lower RMSEA values
denote better fit, and typically values below .08 are taken
to indicate adequate fit, and below .05 are taken to indi-
cate excellent fit (Browne & Cudeck, 1993; Hu & Bentler,
1999; West et al., 2012). The CFI quantifies the difference
between the actual model and a null “baseline” model (i.e.,
a model where all variables are specified as orthogonal
to each other) in reproducing the observed data. Higher
values denote a greater improvement in fit over the base-
line model, and typically values above .90 are taken to
indicate adequate fit, and values above .95 are taken to
indicate excellent fit (Hu & Bentler, 1999; West et al.,
2012). The TLI is similar to the CFI, but it places a
greater emphasis on parsimony (i.e., a model with more
superfluous parameters will look better based on the CFI
compared to the TLI). Like the CFI, values above .90
are taken to indicate adequate fit, and values above .95
are taken to indicate excellent fit (Hu & Bentler, 1999;
West et al., 2012).

Most indices of model fit and their rule of thumb cut-
off values were developed with models that exclusively
address continuous data (Monroe & Cai, 2015). Further,
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most of the work establishing and evaluating the standard
thresholds for model fit are not based on EFA/IFA. Rather,
this body of work tends to revolve around confirmatory
factor analytic models (CFA; Brown, 2006). Although in
one sense CFA is simply a restricted form of EFA (Brown,
2013), there are still important distinctions between these
analyses (e.g., if rotation is used, the presence of a mean
structure, and the ability to model residual correlations).
Accordingly, the mostly CFA-based literature on model
fit may provide some useful guidance on the topic of fit
in EFA/IFA, but it could be problematic to haphazardly
apply these indices and thresholds to EFA, especially in
the even more distant categorical context of IFA (Monroe
& Cai, 2015).

Notably, even in the context of continuous CFA, there
is substantial evidence that fit indices and their cutoff val-
ues do not always work as intended. Fit indices them-
selves should ideally be sensitive only to model misspeci-
fication (and for certain indices, parsimony), and should
be equally sensitive to misspecification across contexts. If
this is not the case, then heuristic cutoff values have the
potential to lead researchers astray. Although fit indices
and cutoff values often can work as intended (e.g., Fan &
Sivo, 2005), in addition to model misspecification, under
certain circumstances fit indices appear to be sensitive
to sample size (e.g., Beauducel & Wittmann, 2005), the
amount of missing data present (e.g., Davey, 2005), non-
normality (e.g., Yuan, 2005), model type (e.g., Fan &
Sivo, 2007), the strength of factor loadings and factor
covariances (e.g., Beauducel & Wittmann 2005; Davey,
2005), and the number of factor indicators/model size
(e.g., Kenny & McCoach, 2003; Marsh, Hau, Balla, &
Grayson, 1998).

Importantly, one fit statistic—the RMSEA—has
received considerable individual attention. The RMSEA
is especially popular partly because under certain condi-
tions it has a known approximate sampling distribution
(a noncentral chi-square distribution), and so confidence
intervals can be computed around the point estimates to
provide a more fine grained assessment of fit (Browne &
Cudeck, 1993; Curran, Bollen, Chen, Paxton, & Kirby,
2003). This foundational strength notwithstanding, spe-
cific investigations of the RMSEA’s performance have
revealed that it is also sensitive to factors such as sample
size, nonnormality, the nature of misspecification (e.g.,
between vs. within factors), the type and size of the
model, and the strength of factor loadings (Chen, Cur-
ran, Bollen, Kirby, & Paxton, 2008; Kenny, Kaniskan, &
McCoach, 2015; Nevitt & Hancock, 2000; Savalei, 2012).

In light of the above, there have been some calls
to wholly abolish fit indices from the literature (e.g.,
Barrett, 2007). Others take a more reasoned approach,
arguing that fit indices are an important part of model
evaluation, but should be used prudently (e.g., Mulaik,

2007). In other words, the problem is not with the fit
indices per se, but rather with the overapplication and
universalization of heuristic “golden rules” of model
fit (Markand, 2007; Marsh, Hau, & Wen, 2004; Saris,
Satorra, & van der Veld, 2009; Steiger, 2007).1 As such,
the functionality of fit indices, and especially their typical
cutoff values, ought to be evaluated under a variety of
circumstances, so researchers can be familiar with the
characteristics of their data and model that might result
in the traditionally used cutoff values being too liberal or
conservative.

Currently, it remains unsettled to what extent indices of
model fit and their commonly adopted cutoff values can
reasonably guide the evaluation of dimensionality in IFA
models (Bovaird & Koziol, 2012; Edwards, Wirth, Houts,
& Xi, 2012). Although fit indices have often been pro-
posed as a method to guide the determination of opti-
mal dimensionality in EFA (Hayashi, Bentler, & Yuan,
2007; Preacher, Zhang, Kim, & Mels, 2013), the practi-
cal utility of fit has not been widely evaluated even in the
context of continuous EFA (Garrido, Abad, & Ponsoda,
2016). Most relevant investigations have focused on the
chi-square test, considering either the first nonsignificant
factor solution as the optimal number of dimensions or
considering relative fit (i.e., comparing nested models and
retaining the first factor solution that does not fit signifi-
cantly worse, based on the chi-square test, than a solution
with one or more extra factors), or the RMSEA with a .05
cutoff. Generally, exactly or approximately correct solu-
tions will fit well. However, the chi-square test often tends
toward overfactoring (e.g., Barendse, Oort, & Timmer-
man, 2015; Beauducel, 2001; Ferrando & Lorenzo-Seva,
2000; Frazier & Youngstrom, 2007; Hayashi et al., 2007).
The RMSEA with its .05 cutoff has demonstrated useful-
ness at identifying the underlying factor structure of a set
of indicators (Preacher et al., 2013), but as it involves the
chi-square statistic, it may also suffer from some of the
chi-square test’s limitations (Hayashi et al., 2007). Sim-
ilarly, there is some suggestion that the CFI/TLI may
be better at identifying optimal factor structures without
overfactoring as reliably as the chi-square test (Frazier &
Youngstrom, 2007).

This literature suggests that considering model fit
may be useful, at least when data are continuous, but
there also may be some problems with certain indices
and thresholds. Complimenting these results is research
considering model fit with categorical data outside the
IFA framework, which can inform the use of fit statis-
tics in IFA. Typically, the chi-square does not appear
to function too differently with categorical data using
WLSMV estimation than its continuous ML counterpart

 It is worth noting for posterity’s sake that in their seminal and widely cited
paper regarding potential model fit guidelines, Hu and Bentler () caution
against the overapplication of their results.
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(Bandalos, 2014), but comparative chi-square difference
tests may have an inflated type one error rate (Sass,
Schmitt, & Marsh, 2014). Under certain conditions the
CFI and TLI appear capable of identifying properly spec-
ified models based on the .95 threshold, but both indices
and cutoffs appear to become less stable as the number of
categories decreases, and category asymmetry increases
(Beauducel & Herzberg, 2006; DiStefano & Morgan,
2014). In some instances, the RMSEA appears relatively
insensitive to category number and asymmetry (DiSte-
fano & Morgan, 2014); however, there is also evidence
that the RMSEA is in fact sensitive to these and other data
features (Bandalos, 2008; Beauducel & Herzberg, 2006;
Monroe & Cai, 2015). Monroe and Cai (2015) specifically
concluded that the RMSEA cutoff values developed for
continuous data are not suitable for categorical data.

Although these findings based on continuous EFA and
estimation techniques for categorical data are informa-
tive, a handful of recent studies have more directly consid-
ered model fit as a tool for guiding dimensionality assess-
ments in IFA. Barendse and colleagues (2015) examined
the performance of the chi-square test and the RMSEA in
models with both major and minor (i.e., “method”) fac-
tors. Their findings generally suggested that the RMSEA
is better suited for identifying the major factor structure,
whereas the chi-square test may be better for identify-
ing the full model. Another important insight from this
study was that comparative fit methods (i.e., comparing
one factor solution to alternative models with more or
fewer factors) tend to overfactor, often to the point that
convergence becomes problematic. Consistent with what
has been shown in continuous EFA, Yang and Xia (2015)
showed that the chi-square test will often push toward
overfactoring, as will the RMSEA and CFI when items are
dichotomous. Garrido and colleagues (2016) considered
several fit statistics at once and concluded that standard
thresholds for model fit are not particularly well suited for
identifying optimal factor structures in population mod-
els characterized by simple structure. However, they also
noted that the CFI and TLI tended to perform the best in
this regard.

In sum, there may be particular features of categor-
ical data that undermine the utility of fit indices, and
render the cutoff values developed for continuous data
models inappropriate in the context of IFA. The limited
(but growing) availability of evidence on this topic, and
the utility of model fit for EFA generally, suggests both
a potential usefulness for indices of fit in these contexts
(e.g., Barendse et al., 2015), but also warrants caution (e.g.,
Garrido et al., 2016). Thus, there is a need to further eval-
uate the performance of fit indices and cutoff values in the
context of IFA (Garrido et al., 2016).

Current study

The aim of the current Monte Carlo simulation study was
to examine the utility of model fit indices and their fre-
quently invoked cutoff values in helping to make deci-
sions regarding dimensionality in IFA. That is, the goal
was to demonstrate whether standard model fit thresh-
olds can confidently be used to help identify the optimal
number of latent variables underlying a set of categori-
cal indicators. There are two major types of errors that
can be made in this context: underfactoring and over-
factoring (Kline, 1994; MacCallum, 2009). The former
refers to identifying too few dimensions, and the latter,
too many. Each error misrepresents the latent structure,
and is more likely to provide difficult to interpret and
unreplicable results. However, underfactoring tends to be
more deleterious than overfactoring (Hayashi et al., 2007;
Kline, 1994; MacCallum, 2009). Thus, we emphasize the
ability of fit statistics and their cutoff values to prevent
underfactoring.

Part of this emphasis is also conceptual, as the more
factors that are included in an IFA solution, the better
the reproduced data matrix will match the observed data
matrix (Goldberg & Velicer, 2006). Thus, the nature of fit
statistics is such that an overfactored solution will fit bet-
ter than the correct/ideal solution. That is, underfactor-
ing is more representative of the type of misspecification
that indices of model fit have been developed to detect
(i.e., they are largely sensitive to failures to reproduce the
observed structure). Therefore, absolute fit thresholds will
not be especially useful in discriminating between cor-
rectly and overfactored models. However, though models
with more factors will always fit better, the cutoffs com-
monly applied in the literature may still reliably discrimi-
nate between underfactored and more optimally factored
IFA models. Thus, to be useful in the context of IFA,
fit cutoffs should generally reject underfactored models,
while accepting correctly (and over) factored models.

In this study we specifically examined the performance
of several popular model fit indices (chi-square, CFI, TLI,
and RMSEA), and the recommendations of their com-
monly applied cutoff values, when dichotomously scored
assessments of various length were subjected to IFA. We
focus on dichotomous items because of their prevalence
in testing and other data settings, and the evidence that
fit indices and cutoff values may be least trustworthy
with fewer categories. Fit indices were examined under
several population model conditions, and with varying
degrees of misspecification; we varied the number of
items in the model, the strength of the factor loadings,
and the strength of the intercorrelations between factors.
All of these variables have been shown to relate to model
fit before in either continuous or categorical contexts.

548 D. A. CLARK AND R. P. BOWLES



Indicators also varied in their distributions, ranging from
symmetrical to asymmetrical, because in practical appli-
cations it is likely that there will be a mix of symmetrical
and asymmetrical items, and there is also evidence that
category asymmetry can affect the evaluation of model fit.

With these simulations we hope to build on and extend
the small but growing body of work on model fit in
the context of IFA (e.g., Barendse et al., 2015; Garrido
et al., 2016). Here, we contribute to this existing litera-
ture by considering several popular indices of fit, longer
assessments, and multiple features of the underlying pop-
ulation model, including model complexity with major
and minor factor structures. All analyses in this study
were based on the popular and powerful Mplus program
(Muthen & Muthen, 1998–2015), its WLSMV estima-
tor, and its approach to computing fit indices. We also
provide a program that can be used by researchers to
help guide the interpretation of fit indices when working
with dichotomous items. It is our hope that this program,
paired with the results from this and previous studies, will
facilitate more effective use of fit statistics when explor-
ing the underlying factor structure of questionnaires and
assessments.

Method

Data generation

Data were generated using the Monte Carlo feature of
Mplus version 7.4 (Muthen & Muthen, 1998–2015).
Initially, analogous continuous data and categorical data
population models were specified. Given the relative lack
of research on the performance of fit indices and their
cutoffs in the context of EFA in general, the continuous
models were used to establish a baseline from which
to evaluate the categorical models that were of primary
interest.

Population models followed a three-factor structure
in which one third of the indicators loaded on each
factor (i.e., each item loaded on one factor, and all other
loadings were set to 0). All items within a given condition
loaded on their respective factor to the same degree.
Residual variances were set such that the total variance
of each indicator was unity (i.e., residual variance = 1 –
λ2). Correlations were specified between all three factors.
Inter-factor correlations were constant in size within a
condition. Item thresholds (or intercepts in the continu-
ous population models) were selected to fall between the
values of -2 and 2, ensuring that there would be a mix of
symmetrical and asymmetrical items in each condition.2

 Eight-item thresholds fell between  and |.|; six-item thresholds fell
between |.| and |.|; two-item thresholds fell between |.| and |.|; and
four-item thresholds fell between |.| and |.|.

Threshold values varied within but not between factors
(e.g., the first and second items in factor 1 had different
thresholds, and the first and second items in factor 2 had
the same two thresholds as the first two items on factor 1),
and remained constant across population models. Factor
means were set to 0, and factor variances were set to 1. All
data sets were generated with 500 observations, a reason-
able sample size for factor analysis in the psychological
and other behavioral sciences. For every condition, 1000
unique data sets were generated.

Three properties of the population models were sys-
tematically varied: the size of the factor loadings, the size
of the factor intercorrelations, and the number of indi-
cators. Factor loadings were either high (.70), moderate
(.50), or low (.35). Factor intercorrelations were likewise
either high (.70), moderate (.45), or low (.20). The assess-
ment length was either short (15 total items; 5 items per
factor), medium (30 total items; 10 items per factor), or
long (60 total items; 20 items per factor). Four differ-
ent factor solutions were considered for each population
model, a three-factor solution (i.e., the correct model),
a two-factor solution, a one-factor solution, and a four-
factor solution.

Data generation—follow-up analyses

Population models characterized by simple structure pro-
vide a “best-case scenario” for evaluating fit statistic per-
formance, but may not be representative of the data
researchers typically encounter. Thus, the generalizability
of the trends observed in the initial analyses, which were
based on simple population factor structures in which
each item loaded on only one factor to a uniform degree,
was briefly probed by considering two types of alterna-
tive population models that demonstrated more complex-
ity. The follow-up models were extensions of the previous
models, specified and evaluated using the same general
procedure described for the initial analyses. For simplic-
ity, we focused on models with 60 items.

First, we included cross loadings in which the last five
items of every factor (i.e., ¼ of each factor’s items) also
loaded onto the next subsequent factor (e.g., items 15–20
had major loadings on factor 1, and minor loadings on
factor 2). These cross loadings were set to have a mag-
nitude of .25 across all conditions. All other items were
specified to load on every other factor with a loading of
.10. Residual variance values were adjusted to ensure that
the total variance of each item remained 1.

Second, consistent with Barendse and colleagues
(2015), population models with minor factors (i.e., extra
factors that only a small number of items cross-load on
to) were considered. In addition to the three major fac-
tors of interest in these population models, five minor
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factors were also specified. Three items, one from each
major factor, loaded on to each of the minor factors. Load-
ings on the minor factors were set to .25. There were no
other cross loadings in this model. All minor factors were
orthogonal to each other, and to the major factors. Again,
residual variance values were adjusted to ensure that the
total variance of each item remained 1.

Data analytic strategy

For each individual replication, the model in Mplus was
specified as an exploratory structural equation model
(ESEM; Asparouhov & Muthen, 2009) with an oblique
geomin rotation,3 estimated via WLSMV. One to four
factors were specified, each with a mean of 0 and vari-
ance of 1. Every item was specified to load on every fac-
tor and every item and factor was specified to be part of
the same exploratory structure (all items can potentially
load on all factors included in the exploratory structure).
With these specifications, the ESEM model is equivalent
to an IFA with the specified number of factors. The ESEM
specification was used here instead of the more straight-
forward EFA/IFA specification because the Mplus output
files for ESEM models are more compatible with the pro-
gram used to extract and integrate fit information across
replications. Individual Mplus input files were generated
and run for each condition using the Mplus Automation
Package (Hallquist & Wiley, 2015) in R (R Core Team,
2016).

The Mplus Automation package was also used to
extract fit information from the individual output files.
For each condition, there were 1000 total output files.
Four statistics for each of the fit indices of interest were
computed from the information included in the 1000
output files per condition. For the chi-square, RMSEA,
CFI, and TLI the mean and standard deviation across all
models within a condition was computed. For the chi-
square test, the proportion of models that demonstrated
statistically significant misfit at both the .05 and .01
alpha level was computed. Similarly, for the RMSEA, the
proportion of models with values below .08 and .05 was
computed. Finally, for both CFI and TLI, the proportion
of models with values above .90 and .95 was computed.
Importantly, the number of models that failed to converge
for a condition was also calculated, and the proportion of
models evidencing “acceptable” and “excellent” fit were
calculated excluding the models that did not converge.
Models with so-called “inadmissible solutions” or “Hey-
wood Cases” (negative residual variances; Wothke, 1993)
were not excluded as here these outcomes just represent

 The default inMplus in EFA-style analyses is to apply an oblique geomin rota-
tion. The type of rotation, or whether there even is a rotation, does not have
any ramifications for model fit or the results presented below (Brown, ).

chance sampling error (as opposed to model error), and
should not affect fit (Briggs & MacCallum, 2003; Marsh
et al., 1998).

Results

The initial results are presented by fit statistic. First, the
chi-square is discussed, followed by the RMSEA, and the
CFI and TLI. Results from the continuous data mod-
els are reviewed first to establish a point of reference
for the categorical models of primary interest. For ease
of presentation, the subsequent sections and tables pri-
marily focus on the 60-item condition. Most patterns
described emerged across the 60-, 30-, and 15-item condi-
tions. Any differences across assessment length are noted
in the text. Full results are available online in the supple-
mental materials located on the open science framework
(osf.io/f2xua).

Across all conditions, the majority of replications con-
verged. Consistent with previous research (e.g., Barendse
et al., 2015; Garrido et al., 2016), almost all replica-
tions that failed to converge were overfactored four-factor
models. The four-factor models were less likely to con-
verge as the number of items decreased, likely because
there was less information available to capture a spurious
fourth factor, leading to unstable estimation. The num-
ber of nonconverged four-factor solutions (categorical)
ranged from 0 to 3 in the 60-item conditions, 9 to 32 in
the 30-item conditions, and 121 to 429 in the 15-item
conditions. A similar, albeit greatly attenuated, trend was
observed for the other factor solutions; nonconvergence
was rare overall, but more likely in the 15-item condition.
Again, estimation may have been more unstable when
there was less information for the models to draw in sep-
arating out multiple factors.

Chi-square test

When data were continuous, the chi-square test indicated
statistically significant misfit for almost all underfactored
models. Only when factor loadings were low and fac-
tor intercorrelations were high was the two-factor model
not rejected in every replication. The three and four fac-
tor models demonstrated much less statistically signifi-
cant misfit than the underfactored models, but more than
would be expected given the p value and appropriateness
of the model. However, across conditions the rate of type I
error was stable, with roughly 40% of three-factor models
consistently demonstrating statistically significant misfit
at the .05 level (20% at the .01 level), and roughly 15%
of four-factor models demonstrating statistically signifi-
cantmisfit at the .05 level (5% at the .01 level). Thus, when
data were continuous the chi-square test reliably rejected
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Table . Fit results for the chi-square test across study conditions for -item assessment with dichotomous items.

High loadings Moderate loadings Low loadings

High r Moderate r Low r High r Moderate r Low r High r Moderate r Low r

Mean
One factor . . . . . . . . .
Two factor . . . . . . . . .
Three factor . . . . . . . . .
Four factor . . . . . . . . .

Standard deviation
One factor . . . . . . . . .
Two factor . . . . . . . . .
Three factor . . . . . . . . .
Four factor . . . . . . . . .

p< .
One factor % % % % % % % % %
Two factor % % % % % % % % %
Three factor % % % % % % .% % %
Four factor % % % % % % % .% %

p< .
One factor % % % % % % % % %
Two factor % % % % % % .% % %
Three factor % % % .% % % % .% %
Four factor % % % % % % % .% %

Note.High r, high factor intercorrelations; Moderate r, moderate factor intercorrelations; Low r, low factor intercorrelations; p< ., percentage of replications with
a chi-square p value below .; p< ., percentage of replications with a chi-square p value below ..

underfactored models, though it did demonstrate an ele-
vated, yet consistent, type I error rate for correctly and
overfactored models.4

Results were less consistent across conditions when
considering the categorical models (see Table 1).5 Under-
factored models, typically evidenced statistically signifi-
cant misfit when factor loadings were high or moderate,
but were less consistently rejected when factor load-
ings were low, and when factor intercorrelations were
stronger. Correctly specified models in the 60-item condi-
tions often evidenced more statistically significant misfit
than expected given the alpha level when factor loadings
were high or moderate (the rate of statistical significance
reached as high as 52%), but not when factor loadings
were low. The strength of the factor intercorrelations was
inconsistently related to three-factor models evidencing
statistically significant misfit; when factor loadings were
high, statistically significant misfit was most common
when factor intercorrelations were also high, but the
opposite pattern emerged when factor loadings were
moderate. Notably, there were fewer instances of statisti-
cally significant misfit in three-factor models at any level
when there were fewer items (see: osf.io/f2xua). When
there were 30 items, rates of statistical significance were
either in line with, or slightly lower than, the stated .05
and .01 alpha levels. When there were 15 items, the chi-
square was never significant more than 1% of the time.
Overfactored models almost never evidenced statistically

 Complete results for the continuous model analyses can be found in the
online supplemental material (osf.io/fxua).

 Figures that graphically depict results across the fit statistics andmodel types
can be found in the online supplemental material (osf.io/fxua).

significant misfit at either the .05 or .01 level; rates of
rejection for overfactored models tended to be below the
stated alpha level.

RMSEA
The thresholds used here were values below .08, and
below .05. When data were continuous, most models
appeared to fit adequately based on the .08 threshold. The
.05 threshold rejected most underfactored models when
loadings were high, but in the other conditions all models
continued to evidence acceptable fit. Overall, when data
were continuous the RMSEA suggested that most mod-
els, regardless of under or overfactoring, fit the data ade-
quately (<.08), if not excellently (<.05).

These trends were more pronounced when consider-
ing the categorical models (see Table 2). All underfactored
solutions across all conditions evidenced at least adequate
(<.08) fit to the data, and the vast majority also demon-
strated excellent (<.05) fit. The one exception was that 1
factor solutions were rejected at the .05 level when fac-
tor loadings were high, and intercorrelations were low.
Notably, underfactored models were slightly more likely
to be rejected at the .05 level in the 30- and 15-item condi-
tions, but only when factor loadings were high. Consistent
with these trends, correctly specified (i.e., three-factor)
models, and overfactored models, were never rejected.

CFI/TLI
The CFI and TLI are presented together because of their
conceptual similarity, and the fact that the results for each
index were analogous (though on average the TLI was
slightly more likely to reject models than the CFI). When
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Table . Fit results for RMSEA across study conditions for -item assessment with dichotomous items.

High Loadings Moderate Loadings Low Loadings

High r Moderate r Low r High r Moderate r Low r High r Moderate r Low r

Mean
One factor . . . . . . . . .
Two factor . . . . . . . . .
Three factor . . . . . . . . .
Four factor . . . . . . . . .

Standard deviation
One factor . . . . . . . . .
Two factor . . . . . . . . .
Three factor . . . . . . . . .
Four factor . . . . . . . . .

<.
One factor % % % % % % % % %
Two factor % % % % % % % % %
Three factor % % % % % % % % %
Four factor % % % % % % % % %

<.
One factor % % % % % % % % %
Two factor % % % % % % % % %
Three factor % % % % % % % % %
Four factor % % % % % % % % %

Note. High r, high factor intercorrelations; Moderate r, moderate factor intercorrelations; Low r, low factor intercorrelations;< ., percentage of replications with
a RMSEA value below .;< ., percentage of replications with a RMSEA value below ..

data were continuous, underfactored models tended to be
rejected using the .90 threshold unless factor intercorre-
lations were high, in which case two factor models were
likely to demonstrate adequate fit. When the .95 thresh-
old was used, the majority of underfactored models were
rejected. However, based on the .95 threshold, three- and
four-factor models were more likely to be rejected when
factor loadings were smaller. Thus, when data were con-
tinuous, the CFI and TLI generally rejected underfactored
models and accepted correctly and overfactored models,
especially when the .95 threshold was used.

When data were categorical the performance of these
statistics was less consistent across conditions, but the
patterns observed often represented an extension of those
observed with continuous data (see Tables 3 and 4).
Underfactored models still tended to be rejected at both
the .90 and .95 level. However, underfactored models
were even less likely to be rejected as the strength of the
factor intercorrelations increased. When factor intercor-
relations were high, one- and two-factor models were
considerably more likely to appear acceptable at both the
.90 and .95 level; even when factor intercorrelations were

Table . Fit results for CFI across study conditions for -item assessment with dichotomous items.

High loadings Moderate loadings Low loadings

High r Moderate r Low r High r Moderate r Low r High r Moderate r Low r

Mean
One factor . . . . . . . . .
Two factor . . . . . . . . .
Three factor . . . . . . . . .
Four factor . . . . . . . . .

Standard deviation
One factor . . . . . . . . .
Two factor . . . . . . . . .
Three factor . . . . . . . . .
Four factor . . . . . . . . .

>.
One factor % % % % % % % % %
Two factor % % % % % % % % %
Three factor % % % % % % % % %
Four factor % % % % % % % % %

>.
One factor % % % % % % % % %
Two factor % % % % % % % % %
Three factor % % % % % % % % %
Four factor % % % % % % % % %

Note. High r, high factor intercorrelations; Moderate r, moderate factor intercorrelations; Low r, low factor intercorrelations;>., percentage of replications with a
CFI value above .;>., percentage of replications with a CFI value above ..
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Table . Fit results for TLI across study conditions for -item assessment with dichotomous items.

High loadings Moderate loadings Low loadings

High r Moderate r Low r High r Moderate r Low r High r Moderate r Low r

Mean
One factor . . . . . . . . .
Two factor . . . . . . . . .
Three factor . . . . . . . . .
Four factor . . . . . . . . .

Standard deviation
One factor . . . . . . . . .
Two factor . . . . . . . . .
Three factor . . . . . . . . .
Four factor . . . . . . . . .

>.
One factor % % % % % % % % %
Two factor % % % % % % % % %
Three factor % % % % % % % % %
Four factor % % % % % % % % %

> .
One factor % % % % % % % % %
Two factor % % % % .% % % % %
Three factor % % % % % % % % %
Four factor % % % % % % % % %

Note. High r, high factor intercorrelations; Moderate r, moderate factor intercorrelations; Low r, low factor intercorrelations;>., percentage of replications with a
TLI value above .;>., percentage of replications with a TLI value above ..

only moderate, many models were acceptable based on
the .90 cutoff.

Correctly specified models almost always appeared
acceptable at both the .90 and .95 levels when factor
loadings were high. Most overfactored models also pre-
dictably fit the data well. However, three-factor models
were still more likely to be rejected when factor load-
ings were smaller, especially when factor intercorrelations
were weak. Indeed, when factor loadings were low several
three-factor models were rejected even when the more
liberal .90 threshold was used. On average, CFI/TLI val-
ues were higher when there were fewer items, leading to
fewer rejections across models. Although there were fewer
rejections of the three-factor model overall when there
were only 30 or 15 items, there still tended to be more of
these rejections when factor loadings and factor intercor-
relations were weaker.

Follow-up analyses

Figures 1 through 8 depict trends in the fit statistics across
the models that feature cross loadings or minor factors
(complete tables andfigures can be found at: osf.io/f2xua).
Generally speaking, models were more likely to fit the
data adequately or excellently when cross loadings were
included in the population models than they were in
the initial analyses. However, despite this general ten-
dency to demonstrate better fit, the major trends across
fit indices and model conditions described above were
still observable. The results based on population mod-
els that included minor factors were largely analogous to
what was observed in the initial analyses. Thus, the fit

statistics appeared to primarily respond to underfactor-
ing in the major structure while ignoring the omission of
minor factors.

Discussion

This Monte Carlo simulation study considered the util-
ity of popular model fit statistics (chi-square, RMSEA,
CFI, and TLI) and their commonly applied cutoff val-
ues for guiding the assessment of dimensionality in IFA.
Generally speaking, results suggest that caution should be
employed when relying on conventional fit cutoff rules
for evaluating models in the categorical data context of
IFA. The primary conceptual utility of fit statistics for IFA
should be to alert researchers to potential underfactor-
ing when identifying the optimal factor structure; how-
ever, none of the fit statistic cutoffs performed unequivo-
cally well in this regard. Importantly, the trends described
below were largely consistent across both simple and more
complex population factor structures.

Summary

Fit indices and their standard cutoff scores were most
effective at detecting underfactored solutions when anal-
yses were based on continuous data. This is unsurpris-
ing given that these thresholds were derived from models
based on continuous data, and supports the notion that fit
thresholds can be useful when considering the number of
factors to retain. The performance of fit statistics and their
popular thresholds was less consistent when data were
categorical, with thresholds often demonstrating more
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sensitivity to variations in study conditions. The CFI/TLI
and their traditional cutoff values were the most reliable
in detecting underfactoring; the .95 threshold specifically
was able to filter out most underfactored models. How-
ever, the performance of these indices and their cutoffs
was still partly contingent on the strength of the factor
loadings, the strength of the factor intercorrelations, and
the number of items on the test.

Interestingly, the CFI/TLI cutoffs were more likely to
reject models when factor loadings were smaller in mag-
nitude, while models evidenced more statistically signif-
icant misfit based on the chi-square test when the factor
loadings were larger. This reinforces how certain aspects
of the data can exert differential effects on fit statistics
and the effectiveness of their cutoffs given the specific
attributes of that statistic/index. For example, on one hand
it may be more difficult for a model to “perfectly” repro-
duce the observed matrix when there are many size-
able interrelations between variables (i.e., greater type one
error in the chi-square), but on the other hand, when
there are many strong interrelations, modeling them even
somewhat accurately provides a much bigger improve-
ment over a “baseline” model in which all variables
are specified to be orthogonal (whereas small interrela-
tions between variables make the actual model less of an
improvement over the baseline, thus the CFI/TLI being
more likely to reject models with low factor loadings; Gar-
rido et al., 2016). Practically, this makes it less likely that
allfit statistic thresholds will converge on a similar conclu-
sion in analyses with real data, and more difficult to pre-
dict why this is the case as the population model parame-
ter values are unknown.

Some trends, however, were consistent across sev-
eral fit statistics. For instance, models were more likely
to demonstrate nonsignificant misfit/appear acceptable
according to both the chi-square and CFI/TLI when fac-
tor intercorrelations were larger. Indeed, larger correla-
tions between factors suggests less factor distinguishabil-
ity, and so it is to be expected that underfactored models
will fit better when omitted factors overlap strongly with
extracted factors (as there is considerable shared informa-
tion). Also, although the number of indicators per factor
did not have any major bearing on the overall conclusions
here, in keeping with previous research (West et al., 2012),
models in general tended to fit better when there were
fewer indicators per factor.

The one exception to this “fewer indicators” pattern
was that under certain conditions the RMSEA cutoffs
were more likely to reject underfactored models when
there were fewer items. This is especially notable because
the typical RMSEA cutoffs consistently indicated that
underfactored models fit the data excellently. Regardless
of the characteristics of the model, all factor solutions

demonstrated adequate, if not excellent, fit to the data by
the conventional standards. This suggests that the tradi-
tional cutoff values for the RMSEA are likely too liberal
for the situations considered here, which is consistent
with recent research on model fit in categorical data anal-
yses (e.g., Garrido et al., 2016; Monroe & Cai, 2015; Yang
& Xia, 2015). However, these findings do run counter
to the recommendation of Barendse and colleagues
(2015) to use the RMSEA for determining (the major)
factor structure in the context of IFA. Methodological
differences may be responsible for this discrepancy. For
example, in Barendse and colleague’s study, there were
only 12 indicators in the models (and here the RMSEA
was less positive when there were fewer indicators), and
there was less category asymmetry in certain indicators.
Of particular note, however, was that they specifically
recommended the RMSEA for selecting the major factor
structure in the presence of minor factors. Our follow-up
analyses supported this idea in that the RMSEA suggested
that the optimal major factor structure of interest fit well
when minor factors were omitted; however, it often also
suggested that an underfactored major structure fit well.
Overall then, the preponderance of the evidence currently
seems to suggest that typical RMSEA cutoffs are relatively
insensitive to underfactoring, perhaps especially when
there are many indicators.

Although fit statistics and their cutoff values were spo-
radically able to detect underfactoring, they were totally
unable to detect overfactoring. This was expected as
extracting more factors will more accurately reproduce
the observed data matrix. There are, however, practical
ramifications of fit statistics’ inherent limitation in sig-
naling overfactoring. Overfitting exploratory factor mod-
els, for instance, could result in the dissemination of tests
that are characterized by unstable factor structures, and
substantively spurious sub-scales (Frazier & Youngstrom,
2007). It is worth noting that overfactored models were
more likely to encounter convergence and estimation
issues, suggesting that estimation difficulties could help
signal an overfactored solution. This is likely to be an
unreliable heuristic however.

Overall, given the well-chronicled issues of fit indices
and cutoff values with continuous data, it is perhaps not
surprising that the fit statistics and cutoffs examined here
demonstrated some problems when applied to dichoto-
mous data with varying degrees of asymmetry. It is, how-
ever, worth emphasizing that these results do not nec-
essarily imply a problem with the fit statistic per se. For
example, given the nature of the CFI/TLI (i.e., comparing
the current model to a baseline), it is to be expected that
they would, and should, look more favorably on underfac-
tored models where there is a higher degree of factor inter-
corrleation in the population model. Indeed, reinforcing
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the sentiments of many ambivalent commentators (e.g.,
Marsh et al., 2004), the major issue is that the commonly
applied cutoff rules, not the statistics themselves, are likely
to be misleading under many circumstances.

Implications

The results here demonstrate that fit statistics, or more
accurately the common fit cutoffs employed in the lit-
erature, are at best imperfect tools for guiding decisions
regarding dimensionality when interpreting an IFA. How
then should researchers utilize fit statistics in the context
of IFA, if at all? The typical CFI/TLI cutoff scores may be
useful in helping to protect against underfactoring (espe-
cially the more stringent .95 threshold), while the RMSEA
should likely be avoided. There are some circumstances in
which the RMSEA may prove useful (e.g., Barendse et al.,
2015), but the results here and in other recent work (Gar-
rido et al., 2016; Monroe & Cai, 2015; Yang & Xia, 2015)
imply that the RMSEA’s standard cutoff rules are often far
too liberal when working with categorical data. Of course,
although the CFI/TLI appeared to be the most practically
useful of those indices considered here, the effectiveness
of their thresholds was still somewhat contingent on cer-
tain data characteristics (e.g., number of indicators, factor
intercorrelations, and number of cross loadings).

Caution is therefore warranted when applying fit statis-
tics and their typical thresholds to IFA models, at least
when working with dichotomous items. Indeed, decisions
regarding dimensionality should likely not be made on the
basis of model fit alone. Instead, fit should be used in con-
junction with other methods for assessing dimensionality.
For example, there is evidence that parallel analysis may
be an effective tool in the context of IFA (Garrido et al.,
2016). Parallel analysis is not widely available for dichoto-
mous data, and as noted, parallel analysis and other more
traditional approaches to assessing dimensionality may
not always translate well into the context of IFA (Wirth
& Edwards, 2008).

Still, despite the limitations of model fit thresholds in
isolation, when paired with other methods (e.g., scree plot
analysis), model fit may help to bolster the argument for
a given factor solution. That is, to the extent that multiple
methods converge on a conceptually coherent solution,
it is possible to have greater confidence in that solution,
even if there are documented flaws with any one method
under certain circumstances. Our findings indicate, how-
ever, that if model fit is being used to compliment other
methods, prioritizing the CFI/TLI while potentially dis-
counting the RMSEA is warranted (Garrido et al., 2016;
Monroe & Cai, 2015; Yang & Xia, 2015).

An alternative approach may be to develop different
cutoff values for the RMSEA (and other fit statistics)

specifically for IFA. However, the sensitivity of fit cutoffs
to various model and data characteristics demonstrated
here and elsewhere makes the development of widely
applicable standards infeasible. Garrido and colleagues
(2016) recommended that researchers run simulations
based on the specific characteristics of their current
data (e.g., number of items, number of categories, and
sample size) to help identify study-specific fit thresholds.
We share this position, and in order to facilitate this
approach we have included a detailed program with
this report, available on the Open Science Framework
(osf.io/f2xua), to aid researchers in conducting their
own simulations to examine how fit statistics are like
to function in their own IFA analyses. This should help
researchers across domains more easily explore the gen-
eral functioning of fit indices in IFA with scenarios that
more closely approximate their actual data.

Limitations and future directions

As is the case in all Monte Carlo studies, there are a num-
ber of variables that were not manipulated, and a number
of levels of variables that were manipulated that were not
considered. For example, the current study relied on only
one constant sample size, and only considered dichoto-
mous items. Further, asymmetrical items were mixed
together with relatively symmetrical items in a given data
set. These data characteristics have “real-world relevance”
(e.g., a set of 500 dichotomous responses with some asym-
metrical items is a likely scenario when conducting a
study on psychopathological symptomatology, or person-
ality, in the general population), but hinder generalizabil-
ity, and make it more difficult to tease apart certain effects
(e.g., would the RMSEA’s thresholds have performed so
poorly if all items were more symmetrical?). Still, even if
the present results are somewhat limited in their scope
and applicability, they at least demonstrate that under
some conditions standard fit statistic cutoff values will
likely suffer from the shortcomings illustrated.

Additionally, it should be noted that many of the pop-
ulation models used here were not especially complex,
with three major factors, equal factor loadings, no cross
loadings, and repeating sets of thresholds. Given the small
body of existing literature on IFA and model fit, and the
comparability to the confirmatory factor analytic models
commonly used in establishing and evaluating fit cutoffs
(e.g., Hu & Bentler, 1999), this represented a reasonable
step. Further, additional analyses that considered slightly
more complex population models provided results con-
sistent with the initial analyses. Notably, even despite the
often clean, favorable setup, the performance of thefit cut-
off values was rather mixed. This seems to imply that rely-
ing on standard fit cutoff values when examining more
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complex data might also be potentially problematic, if
not more so. Indeed, fit statistic thresholds were even less
likely to detect underfactoring when cross loadings were
included.

Finally, the current study did not examine how fit
statistics work in tandem with other methods that are typ-
ically used to assess dimensionality (e.g., parallel analysis
and scree plots). As noted above, it may be the case that
fit thresholds are most effective when considered together
with these other tools. To be sure, there is evidence that
parallel analysis may be effective in IFA (Garrido et al.,
2016) which suggests benefits of a more holistic approach.
Currently, however, Mplus cannot directly perform par-
allel analyses with ordinal data and thus parallel anal-
yses were not considered in the present analyses to be
consistent with typical practice. This approach may limit
the scope of our conclusions, but it maintains the current
results’ direct applicability to the Mplus modeling frame-
work as it is typically encountered.

Future work should attempt to address these limita-
tions and more thoroughly flesh out the functioning of fit
statistics when data are categorical under different condi-
tions. It would also be informative to extend these find-
ings to scenarios in which there are more than two cat-
egories. Further, despite the noted difficulties it may be
beneficial to attempt to develop adjustments for certain fit
statistics (e.g., RMSEA) for when they are applied to cate-
gorical data (e.g., Monroe & Cai, 2015). That is, existing fit
statistics may need to simply be “fine-tuned” for categori-
cal data. Finally, future work should consider the issue of
comparative fit. The present study only examined absolute
fit; however, it is common for nested factor structures to
be directly tested against one another. Indeed, such tests
can offer powerful additional evidence for a certain fac-
tor structure. These tests are most commonly performed
by comparing the difference in chi-square, but there is
also evidence with continuous data that the change in CFI
and RMSEA can be used to compare competing measure-
ment models (e.g., Chen, 2007; Cheung & Rensvold, 2002;
Meade, Johnson, & Braddy, 2008). The generalizability of
these tests to the context of IFA is a fruitful avenue for
future investigation
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